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Abstract In this paper we generalize to braid statistics some of Manin’s work on the quantum 
deformation of the general linear supergroup. The key ingredient in this construction is the 
introduction of a non-standard transposition map UI (Y2 # 1) which is defined in terms of 
a generalized permutation operator Pu (Pi # 1). The dual space (enveloping algebra) with 
P,-staristics is defined. Consideration of coactions on quanNm spaces clarifies the resulting 
structure. 

1. Introduction 

The Perk-Schultz model (generalized six-vertex) and its associated quantum spin chains are 
of current interest to the condensed matter community [l, 21. The statistical weights of this 
model and the corresponding solutions i? of the braid relation are given in equations (2.56) 
and (2.5a), respectively. Using the quantum inverse scattering method (QISM), de Vega 
and Lopes [3,4] obtained an exact solutiou. There have been numerous studies of the 
underlying mathematical structure of this model, i.e. of the quantum groups and enveloping 
algebras associated with the matrices (2.5~). Two types of structure have emerged from 
these studies. On the one hand the R-matrices (2 .5~)  are by now well known to be 
related to the deformation of the general linear supergroups GL(MIN) and their enveloping 
algebras [5-131. The use of the graded version of the Faddeev-Reshetikhin-Takhtajan 
(FRT) formalism will lead to such structures. On the other hand, quantum algebras can be 
obtained by taking the ultrarelativistic limit [14] of the Yang-Baxter algebras used in the 
QISM. Based on the work by de Vega and Lopez [3,4] one would expect to obtain non- 
graded algebras from this process. In fact their work suggests the use of the non-graded 
version of the FRT formalism [15] to construct the quantum groups and algebras associated 
with the R-matrices (2.5~~). This, in fact, has been done by several authors [9,11.16-191 
and algebraic structures that resemble the super ones, but which have no classical limit, 
have been obtained. The claim that two distinct algebraic structures are associated with 
the same R-matrix is somewhat puzzling and raises the question of their relationship. In 
order to understand the key difference between these two types of algebra, let us recall that 
in describing the coproduct A and antipode S of a Hopf algebra H, one must specify the 
transposition map Y : a1 @ a2 + az @a,, where a,, az E H. In the case of the coproduct, 
Y appears in the definition of the multiplication rule in H @ H (see (2.3)) and for the 
antipode it enters through the relation (3.27). While the superalgebras are characterized by 
a graded asposi t ion map (superstatistics) Ys(ul @ az) = (-l)P(n~)P(02)(uz @ at), where 
p ( a )  denotes the parity of element a, the algebras obtained from the non-graded version 
of the FRT formalism are described in terms of the map Y(u1 @ U*) = (a2 @ at) (Bose 
statistics). 

@ 1994 Atomic Energy of Canada Limited 2361 
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In this paper we show, through a generalization of the FRT formalism, that the quantum 
algebraic structures associated with the family of R-matrices given in (2%) may be defined 
in the more general framework of Majid‘s braided tensor categories [20,21]. These new 
structures may be interpreted as the result of two types of deformation: the usual q- 
deformation associated with the R-matrices given in ( 2 . 5 ~ )  combined with what may be 
viewed as a pdeformation of the statistics (by deforming Y) associated with another R- 
matrix, namely the generalized permutation operator [P,]:; = d:S&d. with the ped's 
(c, d = 1, n )  being arbitrary parameters. Since Y is defined in terms of a solution (P,) of the 
braid relation, we follow Majid and say that such structures obey braid statistics. In the light 
of these results, the structures obtained from the graded and non-graded versions of the FRT 
formalism discussed earlier are seen to be only two points on a continuum of possibilities. 
Let us add that, to our knowledge, the general concept of braided tensor categories was 
first introduced by Joyal and Street [22J The key ingredient in our generalization is the 
introduction of a non-standard transposition operator rIr : V@ W + W 0 V, where V and W 
are two vector spaces, which includes as a special case the transpositions associated with the 
Bose and superstatistics. It is non-standard in the sense that Yz # 1 in general. In tackling 
this problem we adopt Manin’s [23] viewpoint and consider quantum groups as symmetries 
of quantum spaces. His approach may be viewed as a more fundamental construction 
than the FRT formalism [15], enforcing tighter constraints on the allowed structures and also 
providing more direct checks of consistency. In particular, the tensorial structure underlying 
the entire formalism can be more explicitly examined and generalized. 

Although of more general utility, om results are presented as a generalization to the braid 
statistics of Manin’s one-parameter deformation of the general linear supergroup [23]. A 
generalization of the FRT formalism to braid statistics naturally follows. We use his notation 
in describing the Zz grading of various objects. The Zz degree of an element b will be 
denoted 6;  a format is an arbitrary sequence (a , ,  QZ, . . . I Q,J with E Zz. Every algebra 
(whose elements are characterized by one (ci) or two indices (a;)) will be associated with a 
given format by defining the grading a! of its elements a{ (i. j = 1, . . . , n) as &/ = + ~ j  

(& = ai or 1 -a:).  Putting i = a; we then get iY; = i + i  (4 = i or 1 - 9. Throughout this 
paper A(n) denotes an algebra over a fixed field k associated with the format (U,, g, . . . , an).  

Finally, we conclude this introduction by stressing the fact that, since the m~ formalism 
is based on the main relations of the QISM, our generalization of this formalism to braid 
statistics was motivated by its possible implications at the level of certain integrable systems. 
The results of this paper smngly suggest the existence of a braided version of the QISM. In 
such a formulation the condition of ultralocality [24] would no longer be imposed. Based 
on the results described below, we proposed [25] for spectd dependent R-matrices of the 
charge conserved type (see definition below (~SQ)), such as those of the Perk-Schultz 
model, a braided version of the main relations of the QIsM and proved the existence of a 
family of commuting transfer operators. Further work is required and, at present, it is not 
clear what role such additional structure (braiding) would have in these models. 

The paper is organized as follows. In section 2 we recall, for ease of reference, some 
known results on the one-parameter deformation of the general linear supergroup and its 
enveloping algebra. The main results of this paper are stated in theorem 1 of section 3 
and theorem 3 of section 4 in which we prove the existence of bialgebras M,,,(n) and 
U&) (in the dual space) that are characterized by special braid statistics (P,-statistics). 
In section 5 we consider in some detail a two-dimensional example. Some of the results 
presented in this paper were announced in [25-271. 
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2. Quantum general linear,supergroup and its dual space 

Let us denote by Eq(n) the Z2-graded- or super-bialgebra generated by the elements zl  
(i, j = 1 ,  . . . , n) and unit element 1 which satisfy the following relations [23] 

( Z y  = 0 for i +  odd 

The coproduct A : E&) -+ E&) €3 E&) and counit E : Eq(n) + k are homomorphisms 
given by 

The defining axioms of a superbialgebra are essentially the same as those of a non-graded 
bialgebra The main ingredient that distinguishes them is the graded transposition map Ws, 
which is defined as 

Ys(aQb)=( -1 )"6(bQa)  a,bEE,(n) .  

For a = z: and b = zi we thus have 

The action of a family of generalized transposition maps [20,21] involving higher tensor 
products is govemed by 

Y ( ( a Q b ) Q c )  =( '4Qid ) ( idQY)(aObQc)  

Y(a@(bQc) )  = ( id@Y)(Y@id) (aQb@c)  
( 2 . h )  

(where a, b and c lie in arbitrary spaces, and the use of the same symbol 8 for maps 
on different spaces should cause no confusion), with the transposition on composites then 
given by 

\Y(ab@c) = ( idQm)P( (uQb)Qc)  

Yr(a 8 bc) = (m 8 id)V(a 8 (b 8 c)) 
(2.2b) 
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where m is the multiplication map in the appropriate space. With some abuse of notation the 
product rule in a tensor product of spaces A@ B is defined in terms of W : BO A + A@ B 
as 

M Couture and X P Leivo 

(a @ b)(c 0 d )  = a Y ( b  Q c)d a ,  c E A, b, d E B (2.3) 

where we transpose b and c in the generalized sense defined by and then multiply the 
adjacent factors in A and B'separately. This will be understood without further comment 
for all the transposition maps considered in this paper. Thus in Eq(n) @E,(n) ,  for example, 
we have that, for generators z! 

(zi' Q z:)(z; Q z:) = ( - l ) ( ~ ~ ) ( f i + q z ! z p  , m  Q z,'z;,. 

Manin has also formally added a Hopf structure to E&) by defining an antipode S, 
which is required to be a graded antihomomorphism 

&(ab) = (-l)"'S,(b)S,(a). 

The relations (2.1) can be written [9] as 

or in a more compact way as the matrix product 

RZ,P,ZlP, = ZlP,Z,P,R (2.4) 

where P, is the graded permutation operator with [F'& = 8t8g(-l)ed, Z is the n x n 
matrix (Z)! = z i  and Z1 = Z Q  I (where the tensor product is not in Eq(n) Q E&), but in 
the space of matrices, i.e. [ZI] ;~ = Z:8;). d is the following matrix solution of the braid 
relation 

li = (1 - 4 2 )  e: 0 e; + 2(-1yqz;e; 9 e: + q C(-l);jei 0 e: ( 2 . 5 ~ )  
lCi<j<n i=l i # j  

where ei I is a matrix unit: (e!): = Slp8jt. Note that the only non-zero matrix elements of 

k are of the type R &  (all i ) .  9 (i j )  and dc (all i ,  j ) ;  we shall refer to this property as 
charge conservation. Note [9] that one can transform (Baxterize) this matrix into the matrix 
solution of the spectral braid relation 

(2.5b) 

whose elements are the statistical weights of the generalized six-vertex model (in the 
trigonometric regime). Here q = and 6 is the specid parameter. 
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The fundamental (+) and conjugate fundamental (-) representations p(*) of E&) are 
defined by 

$*)(z/)i = ( i * l ) L $ ( - i ) j j .  

As was shown in [23], E&) coacts on a pair 4, d: of quantum spaces. 4 is an 
algebra generated by n coordinates xi (i = - l , ,  . . , n)  with parity assignment fi = i and 
quadratic relations ('commutation relations') 

( X i ) 2  = 0 for i = ~ l  (2.4) 

xixj - (-1)'Jq-Ix.x. J 1 -  - o for i < j .  (2.7) 

A: is generated by n coordinates ti ( i  = 1,. . . n) with parity assignment & = 1 - f and 
commutation relations 

By requiring that the maps 

be homomorphisms of 4 and d:, respectively, and use of the following transposition maps 

W ( q  Q z:, = (-lF+?:(z; Q C i )  

where ci = x i  or 6, one obtains, for q2  # -1, the relations (2.1). Note that one could have 
(this will be convenient in the next section) considered the coaction on a set (Q,(n), e&)) 
where Ql(n) = 4 and Qz(n) is the quadratic algebra with n coordinates yi (i = 1 , .  . . , n )  
and parity assignment 9; = i satisfying the relations 

( Y i S  = 0 for i = 0 (2.8) 

yiyj + (-1)'jqyjyi = o for i < j (2.9) 

which are now not of 'supersymmetric' form. In both cases one obtains the set of relations 
(2.1), and it turns out that both Q&) and may be viewed as being dual to 4, albeit 
with different bilinear pairings. The choice ( Q j ( n ) ,  Q&)) is, however, the natural one, 
being representative of the more general situation (i.e. for more general d, for which one 
may need several spaces Qi(n) not related by duality [ZS]). 

We now turn to the dual space [9 ,15] .  Let us denote by U,(n) that subalgebra of the dual 
to E&) which is generated by the unit element 1' and the generators L(*)! ( i ,  j = 1 ,  . . . , n) 
which are defined by duality relations which may be written in terms of tensor products in 
matrix space as 

(l'IZ,Z2. " Zk) = P 
(L"'IZ,Zz.. . ZL) = R, (*I 4 (*). . . R f )  

(1'11) = 1 

(L(*)/l) = I 
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where L(*) = (.L(*)$ and I = (8;) are n x n matrices and Zi = I @ I.. . @ 2 . .  .Q I (2 
in the ith position of k factors). I?!*) acts on factors number 0 (corresponding to the L(*)- 
space) and i, and coincides there with R(*) = i* 'P , .  The generators satisfy the quadratic 
relations 

M Couture and H P Leivo 

where (6, E') = (d. A) or (+, -). The coproduct and counit are given by 

n A(~(*)j)  = p): L(*)j €(L(*);) = 8:. 
kl 

-. 
The grading of L(*)/ is taken to be L(*)/ = i + j and transposition is defined as in 
E&) Q E&) by the map 

A representation p is yielded by 

P(L ( t )1)8  i a = $j(-l)Bi io ,,(L(-);)! = ( i - 1 ) E ( - i ) b j ,  

In the next section, we generalize the considerations of this section and prove the existence 
of a bialgebra Mq+(n) which is characterized by statistics that are more general than the 
supersymmehic or &graded ones of Manin's E&), but which includes E&) as a special 
case. 

3. Quantum symmetries and P,,-statislic~ 

Let us denote by M,(n) the associative algebra whose n2 generators t/ ( i .  j = 1,. . . , n) 
satisfy the commutation rules 

(if)' = 0 ~ for i+ .$=odd (3.1) 

t:t;(klil)'- (-l)"q-'tft;(llik) = 0 

t;t ,!(kli t)+q(-I) H e k  t i t i ( t l i k )  = O  

for i =even, k < & 

for i = odd, k < t 

for .$ = even, i < j 

for .$ = odd, i < j 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

t:$(kljk) - (-l)'jq-'$t;(klik) = 0 

r / f ( k ( j k )  + (-1)'jq rJt/(k[ik) = 0 
~- ~- 

t ,"tf(klj l)  - (-l)"txe tf t;(l l ik) = ( - l f j (q - '  - q)#(kli t)  

for i < j ,  k < l 

for i < j ,  k < l 

(3.6) 

(3.7) tet;(tl j k )  = (-1)ij+"(k[il) 
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where the coefficients (albc) are for now arbitrary functions of the indices. These relations 
can be written more succinctly in terms of the R-matrix (2.5~) as 

To understand the origin of these equations, let ns now define a transposition map Y: 

(3.9) 

with the quantum spaces Qi(n) defined in section 2 and ci being xi or yi as appropriate. 
Accordingly, the (il j k )  will be referred to as the threeindex transposition coefficients. Let 
us recall that there has been so far, in the literature, two types of algebra associated with the 
family of R-matrices given in ( 2 . 5 ~ ) .  One is characterized by superstatistics [5-131, while 
the other has Bose statistics [9,11,16-191. This raises the question of the existence of a 
more general structure which would include these two types as special cases ((il j k )  = 1 or 
( i  I j k )  = (- 1)'%. It is the search for such a smcture which motivated our introduction 
of the three-index coefficients. 

Proposition I .  For q2 # -1, the maps 6; : Qi(n) + M,(n) 0 @(n) 

Q i ( 4  Q M&) + M&) Q QiW h o u g h  

Y(ci Q t,) = (ilke)(ti Q y) 

n n 
6, ( X i )  = ti' Q xj SZ(Yi) = ti' Q yj 

j=1 j=1 

define a left-coaction of the algebra M&) on the algebras Ql(n) and Q*(n). 

(3.10) 

Proof. What needs to be shown is that 61 and 62 are homomorphisms of Ql(n) and e&), 
respectively. Applying these maps on the left-hand sides of equations (2.6) and (2.7) ((2.8) 
and (2.9)) and using the multiplication rule following from (3.9). one must calculate the 
coefficients of the monomials 1 8 x k x t  ( 1  8 ykyc) k < e which are linearly independent 
over Mq in M4 Q Ql(n) (Mp Q Qz(n)) .  Application of 81 on (2.6) gives the following: 
the coefficient of 1 Q (Xk)' gives relation (3.1) for i = 1 and i = 0, while relation (3.3) is 
obtained from the coefficient of 1 Q Xkxc and for k e e .  Application of 61 on (2.7) gives 
the relation (3.4) (coefficient of 1 0 x: for d = 0) and 

t,"t!(klje) - (-l)"+"r~t,"(ejik) = (-l)'jq-'$tf(kIie) - (-1P'q tf$(eljk) 
~~ "~ _I 

for i < j, k < e (3.11) 

which corresponds to the coefficient of 1 Q XkXC for k e e. The map 62 on (2.8) gives the 
following: the coefficient of 1 Q (A)' gives the relation (3.1) for ? = 0 and ,6 = 1,  while 
that of 18 ykyr gives (3.2). Finally, applying 62 to (2.9) gives (3.5) (coefficient of 1 Q (yx)' 
for I = I), while the coefficient of 1 8 ykye gives 

t,"t,!(klje) - (-l)'j+i'tet!(elik) J I  = (-l)'&-'t#eljk) - (-l) ' jqtft;(kli t)  

for i < j ,  k < e .  (3.12) 

For q2 # -1, the set of relations (3.6) and (3.7) is equivalent to (3.11) and (3.12). 17 
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We point out that one could alternatively define the algebra M,(n) through its coaction 
(&A') on the pair (4, d:) of quantum spaces. One obtains the relations (3.1H3.7) by 
using the multiplication rule following from (3.9) in M&) @ 4 but with the different rule 
( t /@tk)( tp@fp)  = ( t / tp@&fp)(k[ tm)'  in M , ( n ) @ d ; ,  where (kllm)' = (k[lm)(-l)!+'. 

We now tum to the question of the polynomiality of Mq(n). Can we define a monomial 
basis for M,(n) and would this lead to constraints on the coefficients (i l jk)? At this 
point it is important to observe the similarities between the commutation relations of Mq(n) 
and those of Eq(n) given in (2.1). The difference lies only in the coefficients of these 
quadratic relations. For ( i l j k )  = (-l)iG+e) they are in fact identical. It follows that the 
approach used by Manin [23] in his study of the structure of E&) can be applied to M,(n). 
Constraints on the three-index lxansposition coefficients will come,from the examination of 
cubic monomials. An ordering of the t/ is defined as follows: t/ c ti if either i > k or 
i = k and j > e. A monomial in the t/ is normally ordered if, for any t' c t" in this 
monomial, t' appears to the left of t" and no odd t/ (i.e. with F + 7 = 1) appear twice in 
the monomial. 

Proposition 2.  Normally ordered monomials in the t,' (i, j = 1, . . . , n) form a basis of 
M,(n) if the transposition coefficients satisfy 

(3.13) ( j  lei)( j Ikm) = ( j  1ki)Gllm). 

Proof. We begin with quadratic monomials and refer the reader to [23, section 5.11 (the 
oneparameter case qij  = 4). Relations (3.1H3.7) for fixed i ,  j ,  k ,  e are relations among 
elements of a 2 x 2 submatrix 

. .  

in T. It is obvious from these relations that t:t,!, t?;. ti"$, t: f ,  tj"t," and ti"$ can be 
normally ordered without restrictions on the transpositlon coefficrents. Now the ordering 
of any pair &," can always be done from the appropriate submatrix E .  It follows that 
normally ordered quadratic monomials form a basis of the quadratic part of M,(n) with no 
restrictions on the coefficients. Manin's ordering algorithm described in section 5.3 of [23] 
then applies and therefore normally ordered monomials span all of M,(n). Showing their 
independence is more tedious. One starts by considering the cubic part of Mq(n). There 
are two distinct ways of reordering a monomial abc when a > b > c. We must check if 
these two paths lead to the same expressions. There are 22 cases one must consider (see 
sections 5.4 and 5.5 in [23] and theorem 3.3 in [29]). As an example consider the case 
rft / tr  with i c j < k and p c 8 c m. Starting from the right 

ti t (5 P tk m ) - - ( -1)Bni+jk+,ii+ik+lj+ij (plkm)-' (elkm)-' ( t l jp)-'  

x (ml jp)(mlie)(plie)t ,"tt ,!  

+ (-$+"+'j(q-' - ~ ) ( p ~ ~ m ) - ' ( e ~ ~ m ) - ' ( ~ ~ i m ) ( p ~ i m ) t ~ ~ t ~  

+ (-1) 
x ( p  1 j m )  ( p  lie) (mlit)t,P ~mtf  

(q-' - q)(plkm)-'(elkp)-'(lljm)-' jk+ip+d+fii+ij 

(3.14) 
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Comparing (3.14) and (3.15) we get the following restrictions for i c j c k and p < 1 < in 

(plim)(plke) = ( P I  ie)(plkm) 

(P Ue) (P I km) (WPM Ijm) = (PI j m )  (e I km) ( p  I ke)  ( e  I jp). 
(eljp)(tlkm) = (elkp)(eljm) 

These relations are obviously satisfied if (3.13) is satisfied. Similar results are obtained for 
the other cases. Therefore, normally ordered cubic monomials form a basis for the cubic 
part of M&). Application of the diamond l e m a  1301 then proves the proposition. 0 

Note that (3.13) restricts the coefficients (il jk) to be of the form fjigki, where fij and gij 
are arbitrary parameters. When one makes this restriction, the defining relations (3.8) of 
M,(n) can be written in a form reminiscent of (2.4) 

~ T , P , T ~ P , ~  = T ~ P ~ T , P , ~ R  (3.16) 

where T, = T 0 I ,  (T)! = t / ,  P, is a generalized permutation operator with (P& = 
S;S,Ca,d and a* is the transpose of a (a) ai;) .  

In order to give M,(n) the structure of a bialgebra we must define two algebra 
homomorphisms A : M,(n) -+ M,(n) Q M,(n) and E : M&) -+ k that satisfy the 
axioms 

(compatibility) (in em). Y(n,. (A Q A) = A .m (3.17) 
(coassociativity) (A Q id)A = (id Q A)A (3.18) 
(counit) ( E  0 id) . A = (id @ E )  . A = id (3.19) 

where m stands for the multiplication map M,(n) @ M,(n) -+ M,(n). 

M,(n), which we choose to be of the simple form given by 

~ ( t /  B t f )  = ( i j l k t ) ( t i  Q t i )  

The Y appearing in (3.17) is the transposition map Y : M,(n) Q M,(n) -+ M,(n) @ 

(3.20) 

where the four-index transposition Coefficients (i j lkl)  are for now arbitrary parameters. 
Without too much risk of confusion (we will use them only in the proofs of lemmas 1 and 2 
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and proposition 6) one may then also inkoduce more general transposition coefficients for 
arbitrary monomials a, b in M,(n) through 

M Couture und H P Leivo 

Y ( u Q b ) = ( u l b ) b Q a  

and the relations (2.2) then reduce to the statements 

(able) = (alc)(blc) (albc) (Qlb)(alc). 

We assume henceforth that when acting on generators $ the coproduct and counit retain 
the form 

n 

A($) = cif Q t,’ E @ / )  = 6: 
k=1 

(3.21) 

and first present some basic results regarding the action of the maps entering the above 
axioms on the algebra A freely generated by the t i ,  subject only to the generalid statistics 
defined by the transposition map (3.20). 

The compatibility axiom (3.17) simply makes natural the notation A(ub) = A(a)A(b) 
which enters the definition of ‘homomorphism’, given that the product in M&) Q M&) 
is defined by the transposition map Y through (2.3). 

Lemmu 1. The maps (A 0 id)A and (id Q A)A are homomorphisms A -+ A 0 A 0 A, 
provided the four-index transposition coefficients satisfy (ijlmn) = (iklmn)(kjlmn) = 
(ijlmp)(ijlpn). 

Proof. Acting on the product of arbitrary monomials a, b in A one finds 

(id 0 N W b )  = a(l)b(l) 0 A(acz))A(b(z)) (a(z)lb(~)) 

= Q(l)b(l) Q a(z)(l)b(z)(l) Q a ( z ) d m z )  (amm Ib(z)co)(acz, Ib (d  
where the convenient shorthand notation A(a) = a(l) 0 q z )  is used. On the other hand 

(id @ A)A(u) (id Q A)A(b) 

= a(i)b(i) 0 a(z)(i)b(z)(i) Q a(z)(z)b(z)(z) (a(z)(i)lb(i)) 

X (a(Z)[Z)Ib(I))(Q(Z)(Z)Ibm(I)). 

The expressions are thus equivalent provided (ao(~) Ib(~) ) (a (z)~) Ib~~))  = (u(z)lb(~)). 
Choosing, without loss of generality, U to be a single generator t,! and using the explicit 
form of the coproduct, one finds this holds if the four-index coefficients satisfy (ijlmn) = 
(iklmn)(kjlmn). The proof for (A 8 id)A is similar. 0 

Lemma 2. The maps (E 8 id)A and (id Q c)A are homomorphisms A -+ A provided 
(ijlmm) = (iilmn) = 1. 

Proof. Again acting on a product of arbitrary monomials 

( E  Q id)A@b) = d q l ) ) d b ( I ) )  0 a ( z h  (a(z)lb(~)) 

which equals ( E  Q id)A(a) - (E 0 id)A(b) provided ( a ~ ~ ~ l b ( r ) )  = 1 when e(b(1)) # 0, which 
requires (ijlmm) = 1 for the given coproduct and counit. The proof for (id8s)A is similar. 

0 
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Having proven that the maps involved are homomorphisms on A, we can easily verify 

We next examine the compatibility of the given coproduct and counit with the quadratic 
the axioms (3.18) and (3.19) by acting on a single generator. 

relations (3.8) which restrict A to M,(n). 

Proposition 3. If 

( i j l k t )  = ( i lkt)( j  ltm)ulkm)-' 

then the map A : Mq (n) --f M, (n) 8 M, (n) is an algebra homomorphism. 

Proof. Applying A on both sides of (3.8) we must show that 

that is 

2 kyb(t:t; 8 tit:)(pkl j q ) ( k [ j t )  =- 2 (f,$'f: 8 t ~ t , j ) i ~ ( p i I b q ) ( i I b j ) .  
r.j ,p,q=l i . j .p.q=l 

Using (pkl jq) (k l j t )  = (pl jq)(klqt)  puts the left-hand side into a form on which (3.8) 
may be used directly. Similarly, the right-hand side may be thus transformed using (3.8). 
The resulting expressions are identical. U 

Proposition 4. If ( i l j j )  = Glii), then the counit E : M,(n) -+ k is an algebra 
homomorphism. 

Proof. Application of E to the relations (3.8) leads straightforwardly to the requirement 
that 

i i f i (k l t t )  = i t i ( a / b b ) .  

Use of the charge conservation of i then reduces this to the given condition on (il j k ) .  
0 

Combining the above results we obtain: 

Theorem 1. The algebra M,,,(n) generated b y  t/ (i. j = 1,. . . , n) subject to the relations 

~ T , P , T ~ P , - '  = T~P,T ,P , -~R (3.22) 

is a bialgebra with the coproduct and counit given by 

A(i,') = E t :  €3 t i  <( t i )  = S{ 
X=l 

when the generalized statistics defined by the four-index transposition coefficients 

are used. 
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Proof. The solution of the conditions on the three and four-index transposition coefficients 
obtained in lemmas 1 and 2, and propositions 2 4 ,  is unique and equal to the following: 
( i l jk)  = (ill& = p j j p ~ '  and (ijlkl) = (ijlkl), = pkjpijpli pk j  with the pa*'s 
(a. b = 1, n) being arbitrary parameters. As a result the relations (3.8) or (3.16) take 

0 

We shall now give an interpretation of the parameters pjj. We will show how the maps 
(3.9) and (3.20), with (ilkl) = (ilkl), and (i j lkt)  = (ijIkt)&, can be derived from a set 
of elementary maps Y : Q. 8 Qa + Q p  @ Q, (or, @ = 1.2) defined as 

M Couture ana' H P Leivo 

-1 -1 

the form (3.22). upon use of the easily verified relation P@-I)~ = Pi ' .  

V ( X i  OXj) = Pjl(Xj @ X i )  Y(Yi 8 Y j )  Fji(Yj 8 Y i )  
(3.23) 

Y(Xi e Y j ) = p ; 1 ( Y j 8 x i )  V ( Y j 8 X j )  =p j1 (Xj@yi ) .  

Using (2 .2~~)  and (3.23) one verifies that 

(3.24) 

Comparison of the maps (3.24) and (3.9) suggest that when coacting on Q1 (Q2)  the 
identification ti = X k  8 ye (ti 8 Qz(1). 
This can be verified by making the above substitution for fj in the equations (3.1). (3.3), 
(3.4) and (3.11) ((3.1). (3.2), (3.5) and (3.12)) combined with the use of the maps (3.23) 
to define the product rule in Q, 8 Qa and the defining relation of the quantum spaces Q.. 
The maps (3.9) with (ilkl) = (ilkl), are therefore consistent with the definition of the 
elementary maps given in (3.23). The same remark also applies to the maps (3.20) with 
(i j lkl)  = ( i j [k t )@.  Indeed, using (3.23) and (2.2~2) one can verify that 

yk 8 xl )  provides a realization of M,,,(n) in 

(3.25) 

These transposition maps can be interpreted as realizations of the map (3.20) in (Qln) @ 
Q2~1)) 8 (Ql(2) 8 Q~cl) ) .  Note that the second transposition is obvious since the coordinates 
xi and yj are treated on an equal footing in (3.23). As a consequence of the above 
considerations the free parameters f i j j  ( i ,  j = 1 ,n )  may be interpreted as two-index 
transposition coefficients in Qu 8 Qp (or, @ = 1,2) which serve as building blocks for 
the three and four-index coefficients. The solutions (ilkl), = pwjp;' and (i j lkt) ,  = 
&&jpLj pkj  of theorem 1 are therefore consistent with the definition (3.23) for the pij's 
and the properties (2 .2~)  of braided maps. 

Proposition 5. 

-1 -1 

Representations p(*) of M,,,(n) are given by 
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Pmof. Applying p(*) to (3.22) we must prove that 

and therefore p(*) will be a representation if, for any set (k ,  e, p)  and (a.  6. a) of upper 
and lower indices, the products pjk p;' pvk pp and pbi p,;' pLvipLgj are equal for all i, 
j and U. In order to prove this we exploit the fact that 2 satisfies charge conservation. It 
follows that only the cases (k = b, e = a, p = a) ,  (k = b, e = a ,  p = a). (k = a, L = a,  
p = b) ,  (k =a, & = b, p =a), (k = a ,  & = a, p = b)  and (k = a ,  & = b, p =a) need to 
be considered. All other cases give 0 = 0. For example, let us consider the case (k  = a, 
e = b, p = a ) .  The sum on the left-hand side contains two terms: a term corresponding to 
( i  = b, j = a ,  U = b)  which gives pjjt p;' pLvk p ~ t  = p.&& and a term ( i  = a,  j = b, 
U = a )  which gives pj~jtp;' pvk ppe = pL,.pL,b. The sum on the right-hand side contains 
only one term, namely (i = a, j = b, T= a)  which gives pbi p j l  pvi pgj = pomp,+ 
Thus the products of p's cancel and we are left with the braid relation. The p's also cancel 
in the other five cases mentioned above. We will call p(+) and p(-) the fundamental and 
conjugate fundamental representations, respectively. U 

Having proven that M,,,(n) is a bialgebra, the next step would be to seek to add a 
Hopf structure by defining an antipode S, assumed still to satisfy the defining~axiom 

m ( S @  id)A = m(id@ S)A = U * E  (3.26) 

where U : k -+ M,,,(n) is the unit map. A suitable generalization of the property of being 
a graded antihomomorphism is that S should satisfy 

m(S @ S)V = S .  m (3.27) 

where here m stands for the multiplication map m : M4,,(n) @ Mq,,(n) + M4,,(n). Given 
the statistics defined by p, this reads, e.g. for a product of generators, as 

S(t / t j )  = ( i j lkt) ,  S(t,')S(t,!). 

Since the coproduct is multiplicative on the generators of M9,,(n), it follows from 
application of (3.26) to a single generator that 

S(T)T = TS(T)  = 1. (3.28) 

Just as there is no antipode in Manin's E9(n),  except in a formal sense, one also does 
not exist in Mq+(n). We next show that there are, however, no obstacles in principle to 
following Manin and defiliing a formal antipode in some universal extension of M,,,(n). 
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Proposition 6. If (3.28) holds, then the maps m(S 8 id)A, m(id 8 S)A and U . E are 
equivalent homomorphisms on Mq.,(n). 

Proof. For m(S 8 id)A acting on a product of arbitrary elements a, b of Mq,,(n), one 
sees that 

M Couture nnd H P h i v o  

m(S 8 id)A(ab) = S(n(l)b(l))a(2)b(z)(n(z)Ib(1)), 
~(~(I))~(U(I))U(Z)~(~))(U(I)I~(I)),(Q(Z)I~(I)), 

= ~(~(l))~(~(l))~(z)~(z)~~l~(l)~,. 

Choosing, without loss of generality, a to be a generator t:, equation (3.28) leads to 
S(a(l))a(z)(nlb(l)), = #I = S(u(l))a@) since the four-index transposition coefficients satisfy 
(iilmn), = 1. Thus one is led in general to 

m(S €3 id)A(ab) = m(S €3 id)A(a) . m(S €3 id)A(b). 

Similar considerations apply to m(id 8 S)A, and thus the equivalence of the two, and the 
general validity of (3.26), follow from (3.28). It only remains to prove that the action of S 
on the quadratic relations (3.8) imposes no further restrictions, i.e. that 

n n 

E$(tje)S(tF)(ikl j t) ,(kl  j e ) ,  = E ~ s ( t ~ ) S ( t ~ ) ( n i l b j ) , ( i  lbj),, 
i . j d  lJ=l 

Multiplying on both sides by (nlqb),t;t: from the left and by (mllu),trt;l from the right, 
0 

We have shown that M,&) coacts as an algebra on the pair (QI (n), Qz(n))  of quantum 
spaces through the homomorphisms 61.8~. It is natural to inquire further whether the 
coactions give corepresentations of M,,,(n) as a bialgebra, that is, whether the maps 61.82 
satisfy the coasswiativity and counit aiioms which would make QI (n) and Q&) Mq.,(n)- 
comodules 

leads through application of (3.28) back to (3.8) itself. 

(A 8 id)& = (id 8 &)Si 

( E  @ id)& = id 

Q i  + Mq 8 Mq 8 Qi 

Q i  + k 8  Qi = Qi. 

(3.29) 

(3.30) 

One may show that all the mappings involved are homomorphisms, and that the axioms do 
indeed hold for Mq,,(n). 

On the other hand, one may approach the entire problem of defining the algebraic and 
coalgebraic sliucture of the coacting object, as well as any restrictions on the statistics to 
be used, by starting from given coactions on quantum spaces which are assumed to be 
comodule algebras. 

Indeed, given coactions Si of the form (3.10) on, for now, freely generated algebras 
.Ql(n) and Q&), and statistics defined through three and four-index transposition 
coefficients as in (3.9) and (3.20), one finds that the axioms (3.29) and (3.30) applied to a 
single xi or yi then define the coproduct and counit to act as (3.21) on a single generator 
t,!, and one can prove: 
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Lemma 3. 
(a) If the three- and four-index transposition coefficients are related by (ijlmn) = 
(iIm?z)(jlmn)-’, then (id 8 &)Si  are homomorphisms. 
(b) If the three-index transposition coefficients satisfy ( i l jk)  = (i l jm)(ilmk).  then the 
coproduct A defined by (3.29) is a homomorphism. 
(c) If the three-index transposition coefficients satisfy (il j j )  = 1, then the counit E defined 
by (3.30) is a homomorphism. 

Proof: The proofs proceed on exactly the same lines as those of lemmas 1 and 2. 0 

Furthermore, proposition 1 may now be seen as deriving the relations (3.8) in the 
algebra Mq(n) from the demand that the imposition of the quadratic relations (2.6H2.9) 
be compatible with the form (3.10) of the homomorphisms Si.  

The above conditions again combine to give the transposition coefficients defined by 
parameters pij, and one may summarize the results as: 

Theorem 2. The quantum spaces Ql(n) ,  Q&I) of (2.6H2.9). are M,,,(n)-comodule 
algebras. 

The point here is that the particular statistics, and a consistent codgebraic suucture, 
follow once one has chosen the quantum spaces and coactions, and assumed statistics of 
the general form given by (3.9) and (3.20). There is, for example, no further need to check 
that the A defined by (3.29) preserves the relations (3.22). 

We conclude this section by connecting with Majid’s work on braided groups [21]. The 
transposition maps (3.9). (3.20) and (3.23) can he  expressed in terms of P, as 

(3.31) 

 ti' 8 d )  = (i),4t”(~,)~~(~,)~~~ aah ( P ~ ) ~ ~ ~ o ,  ” U& U 8@ 
‘1.‘1’,.9 
8 1 . C 2 . 4 4  

where I‘, = [(E‘;)-llt, that is (j,)ff = S$;&. Pp is therefore the braiding matrix 
of Mq,I.(n). These maps are special cases, with the braiding maIrix set to P,, of the 
more general (with arbitrary R-matrix) transposition maps used by Majid to define a 
structure somewhat similar to that obtained from the FRT formalism, but which exhibits 
total covariance under the action of a bialgebra A associated with an R-mahix. In his 
approach, the same R-matrix is used to define the algebraic relations as well as to define 
Y. Our construction can be viewed as a hybrid, with the algebraic relations being defined 
by the R-matrix given in (2.5a), in the framework of the braided tensor category defined 
in terms of another R-matrix, here the generalized permutation operator PP. The distinct 
role of these two elements is especially clear in the comodule algebra approach, where one 
R-matrix defines the quantum spaces 1281 while the other defines the statistics as in (3.31). 
One might consider transposition maps that are defined in terms of more general R-matrices. 
It appears [31] that the possibilities are few. 
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4. Dual space and P,-statistics 

Consider elements 1’ and L(*): (i, j = 1,. . . , n) in the dual space of the algebra I W , . ~ ( ~ ) ,  
which are defined by the dual pairings 

M Couture and H P Leivo 

( i ’ i ~ , ~ ~ .  . . T ~ )  = Pk 

(L(*)pj Tz.. . G) = R!*)Ri*). . . R f )  

(1’11) = 1 

(L(*)ll) = I 
(4.1) 

where L(*) = (E(*)!) and I = (6:) are n x n matrices, and Ti = I @ I @ . . . @ T 8.. .I 
(T in the ith position of a tensor product of k matrices). Ri(” acts on factors number 0 
(corresponding to the L(*)-space) and i, and coincides there with R(*) = k*’ Pw. It follows 
from these duality conditions that L(+) and L(-) are upper and lower triangular matrices, 
respectively. In order to prove the consistency of (4.1) with relations (3.22) we must show 
that 

However, equation (4.1) gives precisely the representation 

(L(*’IT,TZ.. .Tk) p‘*)(TlTZ.. . G) 

Theorem 3. 
l’, subject to the quadratic relations 

The algebra U9,@(n) generated by L(*){ (i, j = 1, . . . , n) and the unit element 

(4.3) 

” 
(where eb = fil; and ( E , € ’ )  = ( i , z k )  or (+,-) ), and equipped with a coproduct 
A : U,,,@) + Uq&) 63 U,.,(n) and counit E : U,,&) -+ k defined by 

with statistics defined by the transposition map \I, : Uq,P(n)@U,,P(n) -+ U9+(n)@Uq.+(n) 
given by 

Y(,Ccf); @ L(f’)i) ( i j lke) ,  (L(f’)f  @ ,C(€)!) (4.4) 

is a bialgebra dual to Mq,P(n). 
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Duality of bialgebras requires the duality of the multiplication and coproduct maps Proof. 
in the sense 

(xyla) = (1 @ ylA(a)) ( 4 4  = (A(x)la 0 b)  

which defines the dual pairing between all elements of U,,,(n) and M,,,(n) given 
(L(*):lt/) = R(*)z, (l@) = 6; and (L(*):Il) = 62. This agrees with the pairings 
already given in (4.1), for the given form of coproduct in U,,,(n). Since the four-index 
transposition coefficient ( i j l k t ) ,  is simply the transpose (pij + pj ; )  of (ijlkt)&, it follows 
that the maps A and E satisfy the axioms (3.17H3.19). 

Relations (4.3) may be written in terms of components as 

We must show that, for example 

In the case p = 1 we must prove that 

which reads 

" . "a 2 ek!,, (i-'):iepkppeu, p k i p ~ ; ~ f  =~ 2 ( i - ' )~ ,  Rji p;ppj.,p;Li,p;l. 
p.i . j=l p,i . j=l 

(4.6) 

Using the braid relation 

iiziz3(i-1)lz = (i-')z3iiziz3 

one proves (4.6) in the same way as in proposition 5, by showing that for any given 
set (k ,  e, u i )  and (a, b,  mi) the products pkppt+ki&' and b;ppju,p;apLiJ' are identical 
constants within each summation. For p = 2 we must show that 

but 



so the left-hand side of (4.8) is equal to 

(4.9) 

From the p = 1 case we have that 

2 k y ( L ( t ) k  ut L(+ a2 ltul)p,k~p;l m2 = 2 ( ~ ( - ) ~ L ( t ) ~ l f : ) p ~ , j p ~ ~ ~ k ~ ~ , .  (4.10) 
*l.LIz=l U l , C t F l  

Substituting (4.10) into (4.9) and with the appropriate change of variables (i + UT, j + UZ, 
a: + i and or2 -+ j )  one obtains the right-hand side of (4.8). thereby proving the p = 2 
case. Note that kom the coassociativity of the coproduct it follows that 

(A(LZLZ)lf i i  @t$f$...tz) = ( A ( L Z L z ) l f z ~ f ~ ~ t $ . . . t z )  

= . z ~ .  (A(LZLz) l t z l f$ .  . , @ fz). (4.11) 

In order to prove the p = 3 case we must therefore show that 

(4.12) 

The proof proceeds in the same way as for the p = 2 case. One ... st transforms the first 
and second brackets ( I  ) on the left-hand side of (4.12) into the corresponding ones on the 
right-hand side using the p = 2 and p = 1 results. The generalization to arbitrary values of 
p is obvious. The cases ( E ,  E') = (i, i) are proven in exactly the same way. The proofs 
that, with the statistics defined by (4.4). the maps A and e are algebraic homomorphisms of 
Uq+(n) proceed just as those for the coproduct and counit in Mq+(n), but with transposition 

0 coefficients everywhere defined by p', since this is what appears in (4.5). 
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In proving the above, one has proven that the dual pairing also gives a representation 
P of U,,&) hough 

p(L(*);); = (L(*){ltl) = (i*1)$pjB, 

We stress the appearance of 'transposed' statistics (4.4) in the dual space U,,&), and 
note that, as a consequence, an antipode map S defined on Uq,r(n) would, for example, 
have to satisfy 

5. A two-dimensional example 

It is well known that the one-parameter deformations GL,(111) and U,(gt(lll)) of the 
general lineat supergroup GL(lI1) and its enveloping algebra U(gt(ll1)) are associated 
with the following solution of the braid relation: 

Also related to this R-mahix are the Hopf algebras X,(2) and its dual %&), proposed in 
[16]. Although the smcture of these algebras resembles that of U,(gt(lll)) and GL(lI1). 
they are not deformations of U(gt(ll1)) and GL(1Il) in that these are not recovered when 
q + 1. So there seem to be two distinct pairs of quantum algebras associated with the 
same R-matrix. There has been some confusion on this issue. One interpretation [8,10] 
is that X,(2) and its dual are the algebras one obtains by using the FRT formalism without 
treating the gradings properly. In other words, with the R-matrix (5.1) one should use the 
graded version of the FRT formalism. This question was examined in [9,32]. In the case 
of U,(gt(lll)) and X,(2) it was shown that they are both generated by four generators H ,  
@* and X, which satisfy ihe relations 

[ H ,  **I = 12** IH, Xol = [XO, $*I = 0 

(**)2 = 0 

which are, of course, the familiar supersymmetric relations. So as algebras they are 
isomorphic, but it was found that the difference lies in the statistics they obey, which 
manifests itself at the level of the Hopf structure. For U,(gt(lll)) the coproduct and 
antipode acting on +* give 

(5.3) 

A 22 grading is associated with this algebra, with $* = 1 and fi = i o  = 0. This grading 
governs the product rule in U, @ U, as well as the antipode of a product in U,. On the 
other hand, the coproduct and antipode for X,(2) satisfy 

A(@) = 1 @ @* + +* @ qxo S(@*)  =--@*q-'". 

(5.4) A($*) = i*(H-XO) @ $* + $* 8 4x0 S($k) = $*jf(H-XO) -XO 4 .  
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For this algebra the statistics are purely bosonic in the sense that the transposition map, 
Y, is simply Y(a 8 b)  = b 8 a for a, b E Xq(2) .  An independent study was made by 
Majid and Rodriguez-Plaza [ll] in which they find similar results and show that these two 
structures are related by ‘superization’. The purpose of this section is to show that these 
two pairs of quantum algebras are in fact only special cases of a more general structure 
with P,-statistics, and may indeed be viewed as just two points in a continuous family of 
such structures. 

Let Mp,,(O. 1) be the bialgebra Mq,,(2) of theorem 1 with format (0, 1) made explicit 
From (3.22), the commutation relations are 

M Couture and H P Leivo 

( t y  = 0 

zit: - pfilpZ1q-lt:r: = o 
$1: - 4-1P11P21 t2tl = 0 

t:t; - gt: = (4-1 - 4)PllPZl 5‘1 

( t y  = 0 

t:g + qt;&LuLL;: = 0 

t:t; + 4PlZ/L22 ‘24 - 

r3: = P l z P n P u  PZl f2tl .  

-1 2 2 - o  -1 1 1 

-1 1 2  -1 -1 1 2 

Note that for fi i jA= (-1);j these relations reduce to those of GL,(111) while for pf, = 1 
we get those of Xq(2) [16]. The coproduct and counit are those given in theorem 1. We 
may also extend this bialgebra and define a Hopf algebra M;&(O, 1) by adding inverses 
(ti)-’ and (tz)-’ of ti ‘and t; in order to define an antipode through 

2 - 2 - 1  2 - 1 1  1 - 1 2  2 - 1  qt:) = ( t i p  + (t:)-’z:(t;)-‘f;(ti)-’ W2) - (iz) + ( t z )  tZ(tl) tlOz) 

(5.5) S(t?) = -(r:,-’t,”(t;)-’ 

s ( ( t y )  = 2: - t:(tz’)-’r; 

S(t;) = -($) 2 -I tZ(t1) 1 1 -I  

S((t ; ) - l )  = tz’ - t;(t:)-’t:. 
The algebraic relations and counit in MZP(O, 1) are natural ones, and the coproduct satisfies 

A(@:)-’) = (ti)-’ 8 (ti)-’ - (ti)-’t:(t;)-’ 8 (t;)-lt;(t:)-l 

A(($)-’) = 8 (t$’ - (t;)-lri(r;)-l 8 (r;)-lt?(t;)-l. 

It is easily verified that the map defined in (5.5) satisfies (3.28). Note that in form these 
mappings are identical to those of the supersymmetric case given in [a, and also correspond 
to those given in [16]. We stress that the P,-statistics must be used. 
‘ We now hun to the dual space of Mq.,(0, 1) and consider Uq,,(O, 1). whose 

commutation relations are 

(L(+’f)2 = 0 

[L(Oj, L( f ’9  = 0 

(L(*’;)(L(-);) = --q”x(L‘-);)(L(*);) 

(L(*);)(L(+):) = -4 f l  x -1 (L (+n)(L(*P) 

(L(-)y = 0 
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where x = pz~p; ;  and y = p.1~p;;'. We now specialize and consider the case pij = f ' J ,  
where f is an arbi t rq  parameter (a more general treatment will be reported elsewhere). 
The resulting algebra U(q,i)(O, I), dual to IW(~,~)(O, l ) ,  may then be realized in terms of 
generators H, +* and XO which satisfy the relations (5.2), by making the identifications 
(where i stands for the complex number iz = -1)  

1 - q  2 - 4  

~~ 

L(+)' - * ( H - X 0 ) / 2  L(*)Z - * ( H + X o M 2 t ( H - X 0 ) / 2 i - ( H - x ~ )  

L(+); = ( 1  - &+ ( H - X ~ ) / 2 i - ( H - X ~ ) r ( H - X ~ ) / 2  

L(-P - - ( I  - q2)*-q-(H+xo)/z. 

4 

2 -  

In this form, the introduction of inverse elements and the passage to U;,,)(Ol1) is 
transparent. The coproduct and antipode on ** take the forms 

+ - + ( H - X o ) f F ( H - X 0 ) / 2  @ *+ + ** @ 4Xo A(@ ) - I  

S(@*) = t**ir(H-X,)ti(X-Xo)/2 -xo, 4 

In su&ary, U&)(O, 1 )  is a Hopf algebra with two types of deformation parameters. 
The parameter q deforms the quadratic relations, while t deforms the statistics. For 
t = - 1  and t = 1 we obtain structures such as U , ( g t ( l l l ) )  and X,(Z),  all as continuous 
deformations of U ( g t ( l l 1 ) ) .  It is interesting to note t h a ~  in the l i t  of q = 1 ,  one 
obtains the braided version of U ( g t ( l l 1 ) ) .  Although we have introduced braid statistics in 
the context of quantum algebras, this example shows that such structures also exist in the 
classical case. Further examples will be reported elsewhere [U, 331. 

6. Conclusions 

We have examined the inlroduction of braided statistics for quantum goups, in the specific 
context of a generalization of Manin's supersymmetric E&) to P,-statistics. Consideration 
of coactions on quantum spaces makes it clear that the structure arises from compatibility 
of the quantum spaces, related to a solution of the braid relation, and the braid statistics, 
which may in general also be taken to arise from a braid solution as in (3.31). This 
viewpoint suggests obvious generalizations. OUT specific example resolves any confusion 
about the algebras GL,(lIl) (U9(g2( l l l ) )  and X&) (Xq(2) )  showing that both are points 
in a two-parameter continuum of deformations of GL(lI1)  ( U ( g t ( l l 1 ) ) .  Majid's approach 
of superization, which discretely relates these algebras, can be generalized to structures with 
P,-statistics. These results will be reported elsewhere 127,331. The possibility of having 
a braided version of the QISM, in the case of the PerkSchultz model, needs to be further 
explored. Finally the question of the quasitriangularity of U,,,@) needs to be addressed. 
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